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Abstract
Motivated by algorithmic problems arising in quantum field theories whose
dynamical variables are geometric in nature, we provide a quantum algorithm
that efficiently approximates the coloured Jones polynomial. The construction
is based on the complete solution of the Chern–Simons topological quantum
field theory and its connection to Wess–Zumino–Witten conformal field theory.
The coloured Jones polynomial is expressed as the expectation value of the
evolution of the q-deformed spin-network quantum automaton. A quantum
circuit is constructed capable of simulating the automaton and hence of
computing such an expectation value. The latter is efficiently approximated
using a standard sampling procedure in quantum computation.

PACS numbers: 03.67.Lx, 02.10.Kn, 04.60.Kz, 04.60.Nc

1. Introduction

A new frontier of quantum information is the search for algorithms capable of addressing
problems in low-dimensional geometry and topology. The Jones polynomial [1] characterizes
the topology of knots and links (collections of circles in 3-space) and is associated with
the expectation value of a Wilson loop operator in quantum Chern–Simons field theory in
three dimensions. The algebraic content of this theory is encoded into a quantum group
structure. The Jones polynomial is the link invariant obtained with all the component knots
labelled with the fundamental irrep of the quantum deformation of SU(2), denoted in the
following by SU(2)q . Efficient quantum algorithms for approximating the Jones polynomial
have been recently proposed in [2]. In [3], we introduced the q-deformed spin-network
automaton model. The spin-network quantum simulator model, which essentially encodes the
(quantum deformed) SU(2) Racah–Wigner tensor algebra, was shown [3] to be capable of
implementing families of finite-states and discrete-time quantum automata which accept the
language generated by the braid group, and whose transition amplitudes are indeed coloured
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Jones polynomials. The latter are an extension of the Jones polynomial with arbitrary irreps of
SU(2)q labelling the component knots. In this paper, we shall explicitly construct a quantum
circuit which efficiently simulates the dynamics of these automata and hence, if appropriately
sampled with a set of measurements, approximates the coloured Jones polynomial. We shall
discuss the complexity of the circuit showing that, since the time complexity of the spin-
network automaton is polynomial in the size of the input (depending on the index of the braid
group and on the number of crossings of the knot diagram), the algorithm that efficiently
simulates the automata also provides an efficient estimation of the link invariant.

The paper is organized as follows. In section 2 we briefly review the physical setting
of quantum geometry and the role that in it play the topological invariants. In section 3
we concisely describe the structure of the spin-network quantum automaton. In section 4
we provide the details of the quantum algorithm that approximates the coloured Jones
polynomials and of the corresponding quantum circuit. In section 5 we provide a few
concluding remarks and discuss possible future developments and extensions of the methods
and concepts introduced in the paper.

2. Quantum geometry and topological invariants

General relativity—the prototype of physical theories whose dynamical variable, the
gravitational field, is geometric in nature—still represents a major improvement in the
‘geometrization programme’ stated by Klein and Einstein almost one century ago. These
ideas laid dormant long after the birth of quantum mechanics and quantum field theory. In
particular, the quest for a quantum gravity theory dates back to 1960s, when Arnowitt, Deser
and Misner [4] introduced the so-called (3 + 1) decomposition of Einstein field equations,
a Hamiltonian reformulation of general relativity to be assumed as the basic ingredient for
constructing a canonical quantization scheme for gravity. We refer the reader to the classical
textbooks [5, 6] for accounts on quantum general relativistic theories up to 1970s.

Nowadays such approach has been almost abandoned in favour of (hopefully) more
effective quantization schemes, but a number of substantial contributions developed in that
golden age keep circulating. A good example is provided by Wheeler’s ‘geometrodynamics’,
which embodies the concept of ‘quantum geometry’ of the physical three-dimensional space,
to be thought of as quantum fluctuations of (diffeomorphism classes of) 3-metrics within the
‘superspace’ [7]. As we shall see below, three-dimensional extended objects—more precisely,
smooth 3-manifolds endowed with Riemannian or Lorentzian metric tensors—with their
rich geometric structure play a prominent role in Chern–Simons quantum field theories and
associated statistical field theories. Moreover, models of quantum gravity in three spacetime
dimensions represent by themselves very useful toy models in view of generalizations to the
physically significant four-dimensional case.

Euclidean quantum field theory is the quantization procedure of a classical field theory
based on ‘functional integration’, over the space of quantum fluctuations of the physical fields
{φ}, of exp[−S({φ})/h̄], where S({φ}) is the classical action defined in the Wick-rotated
counterpart of Minkowskii spacetime [8]. This approach to quantization can be related to
classical statistical field theory, and consequently it inherits the language and methods proper
of statistical mechanics (partition functions, phase transitions, etc). This latter feature is
particularly fruitful if some kind of discretization prescription is applied to the classical theory
and suitably extended to the path integrals which turn out to be interpretable as statistical sums
or partition functionals. Indeed, the most successful quantization scheme for general relativity,
the ‘sum over histories’, was proposed by Hawking and Hartle [9] borrowing techniques from
the Euclidean path integral approach mentioned above. Its discretized version, simplicial
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quantum gravity, relies on Regge’s discrete reformulation of classical general relativity [10]
and has been widely addressed in the last two decades (see e.g. [11, 12] and references therein).

The geometrization programme referred to at the beginning of this section was in some
sense rephrased as a ‘gauge principle’ by Yang and Mills in [13]. Non-Abelian gauge theories
interacting with matter fields and their quantized counterparts still play a central role in the
physics of fundamental interactions, while pure Yang–Mills theories (classical and quantum)
were recognized to encode a number of interesting geometric features (see e.g. the reviews
[14, 15]).

Within the class of quantum Yang–Mills theories we focus our attention on ‘topological’
quantum field theories (TQFT), formulated in terms of axioms by Atiyah in [16] (see also
[17, 18]). Such theories—quantized through the path integral prescription starting from a
classical Yang–Mills action defined on an orientable Riemannian D-dimensional space(time)—
are characterized by gauge invariant partition functions and observables (correlation functions)
depending only on the global structure of the space on which the theories live. The latter
geometric functionals are computable by standard techniques in quantum field theory and
provide novel representations of ‘topological invariants’ for D-manifolds (and/or for particular
submanifols embedded in the ambient space) which are of prime interest both in mathematics
and in theoretical physics. All of this enlightens a new kind of connection between geometry
and quantum physics: in TQFT the physical degrees of freedom of spacetime geometry are
global and not local. Four-dimensional Einstein gravity quantized through the Euclidean path
integral is not a TQFT; however the role of quantum 3-geometry is once more enhanced since
gravity in three spacetime dimensions can be reformulated as a gauge theory closely related
to the SU(2) Chern–Simons TQFT [19, 20].

Without entering into technical details on TQFT in general, let us just recall some of the
basic ingredients of Chern–Simons quantum field theory.

The classical SU(2) Chern–Simons action for the 3-sphere S3 (the simplest compact,
oriented 3-manifold without boundary) is given by

kSCS(A) = k

4π

∫
S3

tr

(
AdA +

2

3
A ∧ A ∧ A

)
, (1)

where A is the connection 1-form with value in the Lie algebra su(2) of the gauge group, k
is the coupling constant, d is the exterior differential, ∧ is the wedge product of differential
forms and the trace is taken over Lie algebra indices. The partition function of the quantum
theory is obtained from the ‘path integral’ prescription, by integrating the exponential of i
times the classical action (1) over the space of gauge-invariant flat SU(2) connections (the
field variables) according to the formal expression

ZCS[S3; k] =
∫

[DA] exp

{
ik

4π
SCS(A)

}
, (2)

where the coupling constant k is constrained to be a positive integer by the gauge-invariant
quantization procedure. The generating functional (2), written for a generic compact oriented
3-manifoldM3 with ∂M3 = ∅, is a global invariant, namely it depends only on the topological
type of M3. This is basically due to the feature that the space of solutions of quantum CS
theory is finite dimensional [19].

The gauge-invariant observables in the quantum CS theory are expectation values of
Wilson line operators associated with oriented knots (or links) embedded in the 3-manifold
(commonly referred to as Wilson ‘loop’ operators). Knots and links are ‘coloured’ with
irreducible representations (irreps) of the gauge group SU(2), restricted to values ranging
over the set {0, 1/2, 1, 3/2, . . . , k/2}. Integer k will be related to the deformation parameter
q in Uq(su(2)), the deformed universal enveloping algebra of SU(2), with q = exp

(−2iπ
k+2

)
.



3050 S Garnerone et al

In particular, the Wilson loop operator associated with a knot K carrying a spin-j
irreducible representation is defined, for a fixed root of unity q, as (the trace of) the holonomy
of the connection 1-form A evaluated along the closed loop K ⊂ S3, namely

Wj [K; q] = trj P exp
∮

K

A, (3)

where P denotes path ordering.
For a link L made of a collection of knots {Kl|l = 1, . . . , s}, each labelled by an irrep,

the expression of the composite Wilson operator reads

Wj1j2...js
[L; q] =

s∏
l=1

Wjl
[Kl; q]. (4)

In the framework of the path integral quantization procedure, expectation values of observables
are defined as functional averages weighted with the exponential of the classical action. In
particular, the functional average of the Wilson operator (4) is

Ej1...js
[L; q] =

∫
[DA]Wj1...js

[L] exp
ik
4π

SCS(A)∫
[DA] exp

ik
4π

SCS(A)
, (5)

where SCS(A) is the CS action for the 3-sphere given in (1) and the generating functional
in the denominator is usually normalized to 1. It can be shown that this expectation value,
which essentially4 coincides with the coloured Jones polynomial [21–23], depends only on
the isotopy type of the oriented link L and on the set of irreps {j1, . . . , js}. The original Jones
polynomial [1] is recovered when a spin- 1

2 representation is placed on each link component.
However, the coloured link invariants are more effective than Jones’ in detecting knots, as
discussed in [25].

The coloured invariants (5) are the basic objects that will be addressed for computational
purposes in the rest of this paper. The reader interested in an account of their construction
through the quantum group approach may refer to [26] (section 3), where the issue of (unitary)
braid group representations is also considered. In the following section, we shall use yet
another kind of approach [27], which relies on the introduction of the boundary Wess–Zumino–
Witten conformal field theory into the Chern–Simons setting. Such approach provides a
particularly useful presentation of the coloured Jones polynomials as expectation values of
unitary braiding operators in WZW theory.

We leave for the concluding remarks at the end of the paper the discussion of possible
extensions of the quantum algorithm discussed in the following session to the other hard
problems arising in the theory of closed (hyperbolic) 3-manifolds.

3. The spin-network quantum automaton

In the first subsection of this section, we shall briefly review automata theory and define
basic concepts of formal language theory. Then we describe the model of quantum automaton
relevant in the present context: the spin-network quantum automaton, which provides a natural
connection between quantum computation and link invariants [3].

4 These polynomials are actually invariants of ‘framed links’, see e.g. [23, 24]. The connection between Ej1...js [L; q]
and the genuine coloured Jones polynomial is Jj1...js (L, q) = {q−3w(L)/4/(q1/2 − q−1/2)} Ej1...js [L], once suitable
normalizations for the unknots have been chosen. Here w(L) is the writhe associated with the planar diagram D(L)

of the oriented link L, defined as w(L) = ∑
p ε(p). The summation runs over the self-crossing points of D(L) and

ε(p) = ±1 according to simple combinatorial rules. The writhe is easily evaluated from the link diagram by simple
counting arguments.
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3.1. Automata theory

The theory of automata and formal languages addresses in a rigorous way the notions of
computing machines and computational processes. We review first some of the basic concepts.

If A is an alphabet, made of letters, digits or other symbols, and A∗ denotes the set of all
finite sequences of words over A, a language L over A is a subset of A∗. The length of the
word w is denoted by |w| and wi is its ith symbol. The concatenation of two words u, v ∈ L is
denoted simply by uv. In 1950s Noam Chomsky [28] introduced a four-level hierarchy
describing formal languages according to their structure (grammar and syntax): regular
languages, context-free languages, context-sensitive languages and recursively enumerable
languages. The processing of each language is inherently related to a particular computing
model (see e.g. [29] for an account on formal languages). Here we are interested in finite-state
automata, the machines able to accept regular languages.

A deterministic finite state automaton consists of a finite set of states S, an input alphabet
A, a transition function F : S × A → S, an initial state sin and a set of accepting states
Sacc ⊂ S. The automaton starts in sin and reads an input word w from left to right. At the ith
step, if the automaton reads the symbol wi , then it updates its state to s ′ = F(s,wi), where s
is the state of the automaton reading wi . One says that the word has been accepted if the final
state reached after reading w is in Sacc.

In the case of a non-deterministic finite-state automaton, the transition function is defined
as a map F : S × A → P(S), where P(S) is the power set of S. After reading a particular
symbol, the transition can lead to different states, according to some assigned probability
distribution.

Generally speaking, quantum finite-state automata are obtained from their classical
probabilistic counterparts by moving from the notion of (classical) probability, associated
with transitions, to quantum probability amplitudes. Computation takes place inside the
computational Hilbert space through unitary matrices. In the present context, we shall confine
our attention to the so-called measure-once quantum automaton [30]. The latter is a 5-tuple
M = (Q,�,U, |q0〉, |qf 〉), where Q is a finite set of quantum states, � is a finite input
alphabet with an end-marker symbol # and U(�) : Q → Q is the set of transition functions
induced by reading �. The probability amplitude for the transition from the state |q〉 to the state
|q′〉 upon reading the symbol σ ∈ � is therefore 〈q|U(σ)|q′〉. The state |q0〉 ∈ Q is the initial
configuration of the system, and |qf 〉 is an accepting final state. For all states and symbols the
function U(σ) must be represented by unitary operators. The end-marker # is the last symbol
of each input word and computation terminates after reading it. At the end of the computation
the configuration of the automaton is measured; if it is in an accepting state then the input is
accepted, otherwise it is rejected. The probability amplitude for the automaton of accepting
the string w is given by fM(w) = 〈qf |U(w)|q0〉, U(w) ≡:

∏
wi∈� U(wi) : for w =:

∏
i wi :

(: · : denotes ordered product, and for w we used the product symbol to denote concatenations).
The explicit form of fM(w) defines the language L accepted by that particular automaton. If P̂

denotes the projector over the accepting states, the probability for the automaton of accepting
the string w is given by pM(w) = ‖P̂ |qw〉‖2, where |qw〉 ≡ U(w)|q0〉.

3.2. The q-deformed spin-network automaton

In this subsection, we review briefly the structure of the q-deformed spin-network automaton
model, first discussed in [3]. This quantum automaton is an extension of the spin-network
model of computation, introduced in [31] and worked out in [32], constructed on the
combinatorics of the Racah–Wigner algebra of the quantum group SU(2)q . The q-deformed
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Figure 1. A portion of the spin-network graph. Unlabelled trees are associated with particular
binary coupling schemes for the total Hilbert space. Single edges correspond to recoupling-like
transformations, double edges correspond to braid-like transformations.

Figure 2. A portion of the spin-network graph with a ribbon denoting a path on the graph
corresponding to a particular evolution of the spin-network automaton.

spin network is a model for a quantum automaton capable of processing the braid group
language. From now on we shall refer to the model simply as spin network, subsuming the
use of the deformed algebra.

The spin-network can be seen as a collection of graphs Gn(V ,E) parametrized by an
integer n that is a measure of the size of the automaton. For fixed n, to each vertex v ∈ V of
Gn(V ,E) is associated the total Hilbert space H

J
b

of the ordered tensor product of n irreps of
SU(2)q (at q root of unity), together with a particular binary coupling scheme b of the n angular
momenta jl (l = 1, . . . , n) elements of the set J. Different vertices correspond to different
binary coupling schemes and admit a realization in terms of unrooted binary trees whose nodes
are labelled with SU(2)q irreps. The edges e ∈ E of Gn(V ,E) are associated with unitary
evolutions connecting vertices (Hilbert spaces) belonging to V . A restriction is imposed on the
type of allowed elementary unitary evolutions for the states in H

J
b
: they can be either braid-like

or recoupling-like. The former are associated with a unitary representation of the braiding
between two adjacent leaves of the binary tree; the latter are associated with reconfigurations
of the binary coupling structure of the tree. The graph Gn(V ,E) is constructed in such a
way that two vertices are connected by an edge if and only if there exists a braid-like or a
recoupling-like unitary evolution mapping a state of the first vertex to a state of the second
vertex (see figure 1). It was shown in [3] that it is possible to construct a finite-state quantum
automaton able to process the language generated by the braid group Bn. Each graphical
realization of the quantum automaton can be mapped onto a path in Gn(V ,E). The input
word to the automaton is an element b ∈ Bn and determines the evolution of the automaton
according to its image U(b), a unitary representation of Bn, which constitutes the transition
rule. The evolution of the automaton is a sequence of allowed moves on Gn(V ,E), as depicted
in figure 2.
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The main result in [3] is that the probability amplitude for the automaton evolution
associated with the unitary representation of a braid, whose closure is a particular link L, is
equal to the coloured Jones polynomial of L. This result is based on the work of Kaul [27].
The details of the construction of the unitary representations of Bn will be summarized in the
following section.

The connection between the spin-network computational model, the theory of quantum
automata and link invariants will allow us to provide a quantum algorithm for the efficient
approximation of topological invariants of knots. The advantage of using the spin-network
quantum automaton resides in its transition rules, which can be straightforwardly expressed in
the q-deformed co-algebra recoupling scheme. The latter naturally provides the set of unitary
operations which are the building blocks of the quantum circuit evaluating the invariants.
Previous discussion was aimed to mapping the problem of evaluating link invariants into the
problem of simulating the corresponding evolution of the quantum automaton and considering
henceforth the two problems as equivalent.

4. A quantum algorithm that approximates the coloured Jones polynomial

In this section, we provide a quantum algorithm that efficiently approximates the value of the
coloured Jones polynomial. The interest in this problem stems from the fact that an additive
approximation of the Jones polynomial is sufficient to simulate any polynomial quantum
computation [36]. The construction of the algorithm involves three different contexts:

(i) a topological context, where the problem is well defined and which allows us to recast the
initial instance from the topological language of knot theory to the algebraic language of
braid group theory;

(ii) a field theoretic context, where tools from CS topological field theory and WZW conformal
field theory are used to provide a unitary representation of the braid group;

(iii) a quantum information context, where the basic features of quantum computation are used
to efficiently solve the original problem formulated in a field theoretic language.

We shall not discuss the topological context itself, where theorems and algorithms are available
to relate links and braids, and refer the interested reader to [33, 34] and [26]. The field theoretic
context will be discussed in the first subsection. The second subsection will deal with the
basic structure of the algorithm and its computational complexity. In the last subsection, we
shall complete the proof of efficiency and we shall provide notions needed to completely
characterize the algorithm.

4.1. The Kaul construction

In [27], Kaul provides a unitary representation of the braid group and develops a method to
evaluate observables in SU(2)q CS field theory on the 3-sphere S3. His construction is based
on the relationship between CS theory on a 3-manifold with boundary and the induced WZW
conformal field theory on the boundary. Let us consider a 3-manifold M3 with a number n of
two-dimensional boundaries �1, �2, . . . , �n. For each of these boundaries, say �i , there are
a number of Wilson lines carrying spins j i

l intersecting the boundary at some ‘puncture’ P i
l

on the boundary (see figure 3).
We can associate to each �i a Hilbert space Hi . The CS functional integral overM3 is then

given as a state in the tensor product of such Hilbert spaces. Following the literature, in this
section we shall henceforth denote by SU(2)k the quantum group SU(2)q with q = exp

(
2π i
k+2

)
;

in the following, we shall use both expressions interchangeably. The conformal blocks
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Σ
1

2Σ

j1
^ j3

^j2
^

j1
^* j3

^*
j 2̂
*

Figure 3. Three Wilson lines intersecting the boundaries of a 3-sphere.

j1 j2 j3 j4 j2m-1 j2m

p1 pm-1
..........p0

j5 j6

p2

r1

j1 j2 j3 j4 j2m-1 j2mj5 j2m-2

q0

q1 q2 qm-1
..........

s1

Φ (p;r) (j ,...,j )1 2m

Φ(q;s) (j ,..., )1 j2m

A
(p;r)

(q;s)

(a)

(b)

Figure 4. Duality transformation between two types of conformal blocks.

of SU(2)k WZW field theory on the boundaries �i with punctures determine the properties
of Hi . For each Hi there are different bases related by duality of the correlators of the WZW
conformal field theory.

These duality matrices can themselves be expressed in terms of q-deformed SU(2)

recoupling coefficients. This allows us to relate the unitaries generating the computational
dynamics of the spin-network automaton to the observables of the CS field theory.

An important aspect in the construction developed in [27] is the close connection between
links and braids. One obtains this important result by two main theorems. The first generalizes
to coloured oriented braids a theorem, due to Birman [34], relating links to plats of braids.
The second, which allows us to decompose the duality matrix associated with a general q-3nj

recoupling transformation into a sequence of elementary duality matrices associated with q-6j

recoupling transformations, reads the following theorem.

Theorem. The correlators for 2m primary fields with spins j1, j2, . . . , j2m in SU(2)k Wess–
Zumino–Witten conformal field theory on S2 are related to each other by

|�(p;r)(j1, . . . , j2m)〉 =
∑
(q;s)

A
(q;s)
(p;r)




j1 j2

j3 j4

...
...

j2m−1 j2m


 |�(q;s)(j1, . . . , j2m)〉, (6)
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q-6j

q-6j

q-6j

q-6j

q-6j

q-6j

q-6jq-
3n

j

Figure 5. The sequence of decompositions into elementary recoupling transformations of a
particular duality matrix.

where the duality matrix is given as a product of the basic duality coefficients for the four-point
correlators as

A
(q;s)
(p;r)

[
j1 j2

...
...

]
=

∑
t1,t2,...,tm−2

m−2∏
i=1

(
Ati

pi

[
ri−1 j2i+1

j2i+2 ri

]
A

si−1
ti

[
ti−1 qi

si j2m

])

×
m−2∏
l=0

Aql+1
rl

[
tl j2l+2

j2l+3 tl+1

]
. (7)

Here r0 ≡ p0, rm−2 ≡ pm−1, t0 ≡ j1, tm−1 ≡ j2m, s0 ≡ q0, sm−2 ≡ qm−1, j2m =∑2m−1
i=1 ji and the spins meeting at trivalent vertices in figure 4 satisfy the fusion rules

of the SU(2)k CFT. In figure 5, we provide a pictorial example of the content of the
theorem.

The elements in the string {j1, j
∗
1 , . . . , m, j ∗

m} will be referred to as j-type numbers, the
elements in {p0, . . . , pm−1} as p-type numbers and the elements in {r0, . . . , rm−2} as r-type
numbers.

A general n-strand coloured oriented braid is specified by giving n assignments ĵi =
(ji, εi), representing the spin and the orientation at each point on the upper and lower horizontal
lines intersecting the strands. The generators of the groupoid of coloured oriented braids are

bl

(
ĵ ∗

l+1 ĵ ∗
l

ĵ l ĵ l+1

)
≡ bl

(
ĵ ∗

1 . . . ĵ ∗
l+1 ĵ ∗

l . . . ĵ∗
n

ĵ 1 . . . ĵ l ĵ l+1 . . . ĵ n

)
, (8)

with l ∈ {1, . . . , n − 1}, where the ‘*’ implies opposite orientation of the strand with respect
to the horizontal line (figure 6).

The generators of coloured oriented braids satisfy the usual defining relations of the braid
group (figure 7)

bi

(
ĵ ∗

i+1 ĵ ∗
i

ĵ i ĵ i+1

)
bi+1

(
ĵ∗

i+2 ĵ∗
i

ĵ i ĵ i+2

)
bi

(
ĵ ∗

i+2 ĵ ∗
i+1

ĵ i+1 ĵ i+2

)

= bi+1

(
ĵ ∗

i+2 ĵ ∗
i+1

ĵ i+1 ĵ i+2

)
bi

(
ĵ ∗

i+2 ĵ ∗
i

ĵ i ĵ i+2

)
bi+1

(
ĵ∗

i+1 ĵ∗
i

ĵ i ĵ i+1

)
,
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j1^* j2^* jl+1
^* jl^* jn-1

^* jn^*

... ...

j1^ j2^ jl^ jl+1
^ jn-1

^ jn^

bl

Figure 6. A graphic realization of a generator of the coloured braid group.

= =

jî

*

ji+1
^ ji+2

^

jî*ji+1
^*ji+2

^ *jî*ji+1
^*ji+2

^

jî ji+1
^ ji+2

^

Figure 7. Defining relations for the coloured braid group generators.

for i = 1, . . . , n − 1 and

bi

(
ĵ ∗

i+1 ĵ ∗
i

ĵ i ĵ i+1

)
bl

(
ĵ ∗

l+1 ĵ ∗
l

ĵ l ĵ l+1

)
= bl

(
ĵ ∗

l+1 ĵ∗
l

ĵ l ĵ l+1

)
bi

(
ĵ ∗

i+1 ĵ ∗
i

ĵ i ĵ i+1

)
,

for |i − l| � 2.
The platting of a coloured oriented braid on an even number of strands is the pairwise

joining of contiguous strands, both from above and below. Birman’s theorem, which relates
oriented links to plats of ordinary braids [34], is extended in [27] to coloured oriented braids
in such a way that a coloured oriented link is represented by the plat closure of an oriented

coloured braid b
( l̂1 l̂∗1 . . . l̂m l̂∗m
ĵ 1 ĵ∗

1 . . . ĵm ĵ∗
m

)
, see figure 8.

We can finally describe now a method for evaluating the expectation value of an arbitrary
Wilson link operator. Consider the 3-sphere S3 with two three-balls removed. This is a
manifold with two boundaries with the topology of the 2-sphere S2. Let us place in this
manifold 2m Wilson lines with spins j1, j2, . . . , j2m, such that all the spins generate an
SU(2)q singlet connecting one boundary to the other. It is easily recognized that with these
Wilson lines, we can realize any element of B2m (see figure 9).

The CS functional integral over the 3-manifold can be realized by a state in the tensor
product of vector spaces H1 ⊗ H2, associated with the two boundaries �1 and �2. Conformal
blocks can be chosen as basis vectors for these vector spaces. The inner products of these
basis vectors are normalized according to

〈�(p;r)(ĵ ∗
1, ĵ

∗
2, . . . , ĵ

∗
2m)|�(u;v)(ĵ 1, ĵ 2, . . . , ĵ 2m)〉 = δp,uδr,v. (9)
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^
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^
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^
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^
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^
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Figure 8. Platting of 2m coloured strands.

B

...

...

j1̂ j1̂* j2̂ j2̂* jm̂ jm̂*

l1*
^

l1*
^

l2
^

l2*
^

lm
^

lm*
^

Σ

Σ 1

2

Figure 9. An arbitrary coloured braid pattern embedded into a 3-manifold with boundaries,
�1, �2, with the topology of S2.

The basis vectors |�(p;r)(ĵ 1ĵ 2 . . . ĵ 2m)〉 of the conformal blocks �(p;r)(ĵ 1ĵ 2 . . . ĵ 2m) are
eigenfunctions of the odd indexed braiding generators b2l+1 defined in (8). The even indexed
braid generators b2l are diagonalized in the basis |�(q;s)(ĵ 1, . . . , ĵ 2m)〉. The following
eigenvalue equations hold

b̂2l+1|�(p;r)(ĵ 2l+1, ĵ 2l+2)〉 = λpl
(ĵ 2l+1, ĵ 2l+2)|�(p;r)(ĵ 2l+2, ĵ 2l+1)〉, (10)

b̂2l |�(q;s)(ĵ 2l , ĵ 2l+1)〉 = λql
(ĵ 2l , ĵ 2l+1)|�(q;s)(ĵ 2l+1, ĵ 2l )〉. (11)

Here |�(p;r)(ĵ l , ĵ l+1)〉 ≡ |�(p;r)(ĵ 1, . . . , ĵ l , ĵ l+1, . . . , ĵ 2m)〉. The eigenvalues of the braiding
matrices depend on the relative orientation of the strands, and for right-handed half twists (i.e.
over-crossings) their value is

λt (ĵ , î) ≡ (−)j+i−t q(cj +ci )/2+cmin(i,j)−ct /2, (12)

for parallel oriented strands, and

λt (ĵ , î) ≡ (−)|j−i|−t q−|cj −ci |/2+ct /2, (13)

if the orientation is anti-parallel. Here cj is the quadratic Casimir operator equal to j (j +1) for
the spin j representation. The eigenvalues (12) and (13) derive from the monodromy properties
of the conformal blocks of the corresponding CFT. The associated unitary representation of
the braid group is provided by the following theorem.
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Theorem. A class of representations K : Bn → U(d) from the generators of the groupoid of
coloured oriented braids into the unitary d × d matrices (d = d(n, |b|)) in the basis |�(p;r)〉,
is given by

K
[
b2l+1

(
ĵ∗

2l+2 ĵ ∗
2l+1

ĵ 2l+1 ĵ 2l+2

)](p′;r′)

(p;r)
= λpl

(ĵ 2l+1, ĵ 2l+2)δ
p′
p δr′

r , (14)

and by

K
[
b2l

(
ĵ ∗

2l+1 ĵ ∗
2l

ĵ 2l ĵ 2l+1

)](p′;r′)

(p;r)

=
∑
(q;s)

A
(q;s)
(p;r)




...
...

j2l−1 j2l+1

j2l j2l+2

...
...


 λql

(ĵ 2l , ĵ 2l+1)A
(p′;r′)
(q;s)




...
...

j2l−1 j2l

j2l+1 j2l+2

...
...


 . (15)

The proof that the defining relations for the braid generators are indeed satisfied can be found
in [27].

Consequently, the expectation value of a Wilson loop operator for an arbitrary link L

presented as a plat closure of a coloured oriented braid b
(

l̂1 l̂∗1 . . . l̂m l̂∗m
ĵ 1 ĵ

∗
1. . . ĵmĵ∗

m

)
, generated by a word

given in terms of the braid generators, is given by

V [L; j; q] =
m∏

i=1

[2ji + 1]〈�(0;0)(l̂1, . . . , l̂
∗
m)|K

[
b

(
l̂1 . . . l̂∗m
ĵ 1 . . . ĵ∗

m

)]
|�(0;0)(ĵ 1, . . . , ĵ

∗
m)〉,

(16)

where the multi-index (0; 0) denotes the case in which all the elements in the set of p and
r-type numbers are equal to 0, while

[x]
.= qx/2 − q−x/2

q1/2 − q−1/2

is the standard notation for the quantum integer. The latter theorem gives us the explicit
evaluation of the coloured polynomial. It can be shown that the Jones polynomial corresponds
to a spin- 1

2 representation living on all the components of the link.

4.2. The qubit representation

In this section, we show how to efficiently implement on a qubit-register the Kaul unitary
representation K of the coloured braid group. We prove that each unitary matrix of K(B2m),
interpreted as a gate acting on a qubit-register, can be efficiently decomposed into a set of
universal elementary gates. This is done first encoding into a qubit-register the basis vectors
used in K and then showing how K(bi) can be efficiently compiled for every bi ∈ B2m.

Each vector in the basis set {|�(p;r)(j1, j
∗
1 , . . . , jm, j ∗

m)〉}, corresponding to the conformal
block shown in figure 4(a), is completely characterized by three sets of quantum numbers, p, r
and j, fully labeling the irreps of SU(2)q . Recall that the p-, r- and j-type numbers belong to
the set

{
0, 1

2 , . . . , k
2

}
, where k is the Chern–Simons coupling constant. This means that each

type of number can be specified using log2(k + 1)� qubits, where r� denotes the least integer
� r . An element of the basis can then be encoded using 4m − 3) × log2(k + 1)� qubits.
The register we need to use has to code only for the p-type and r-type numbers, implying that
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p0 pm-1 r1 rm-3
.... ....

.... ....

Figure 10. Register of qubits for the Kaul representation.
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:
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:
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K(b )2l+1 λ ΙΙ=

|p0>

|pm-1>

|r1>

|rm-3>

|p0>
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|r1>

|rm-3>

.

Figure 11. The gate realization of the odd-indexed braid generators.

K(b2l)

K(b2l)

|p0>

|pm-1>

|r1>

|rm-3>

:
:
:
:

:
:
:
:

:
:
:
:

:
:
:
:

|p0>

|pm-1>

|r1>

|rm-3>

A Aλ=
-1.

Figure 12. The gate realization of the even-indexed braid generators.

only (2m − 3) × log2(k + 1)� qubits are sufficient. On the qubit-register we chose the order
shown in figure 10.

The odd-indexed braid generators are diagonal matrices in the basis of the K-module,
therefore there is no problem in implementing their action on the quantum register (see
figure 11). The even-indexed braid generators have a less trivial representation (see figure 12).

Resorting to the representation in (15), we need to apply two duality matrices, or
recoupling transformations, in order to explicitly construct the image of these generators under
K. Each recoupling transformation can in turn be decomposed into a series of elementary
quantum 6j transformations using (7), see e.g. figure 13.

It follows that the problem of efficiently compiling the general recoupling transformation
from the eigenspace of odd-indexed braiding operations to the eigenspace of even-indexed
braiding operations can be mapped into the easier problem of efficiently compiling a single q-6j
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q-6j

q-6j

q-6j

q-6j

q-6j

q-6j

q-6j

s
w

a
p

s

|t1>

|t2>

|p >0

|p >1

|p >2

|p >3

|r >1

|q >0

|q >1

|q >2

|q >3

|s >1

Figure 13. The quantum circuit implementing the decomposition of the eight-point conformal
block in terms of q-6j gates. The corresponding path on the spin-network graph is shown.

A j1 j2
j3 j4[ ]

| >j1
| >j2
| >j3
l >j4

|l> |m>

| >j1
| >j2
| >j3
l >j4

|l> |m>C-q6j =.

Figure 14. Definition of the controlled q-6j transformation.

l
m

j2

j1

j3

j4

j2 j3

j1 j4

q-6j

(a) (b)

Figure 15. The q-6j transformation.

transformation (figure 14). To this end, note that a q-6j transformation, or the corresponding
duality matrix, is a unitary transformation from states in the conformal block of figure 15(a)
into states of the conformal block of figure 15(b).

Each element of the associated unitary matrix is defined in terms of the q-Racah
coefficients by the following expressions:

|m〉〈l|j ≡ Al
m

[
j1 j2

j3 j4

]
= (−)(j1+j2+j3+j4)

√
[2m + 1][2l + 1]

(
j1 j2 l

j3 j4 m

)
q

, (17)

where all the relevant triplets of SU(2)q irreps satisfy the fusion rules of the WZW CFT.
Recall that an explicit expression for the q-Racah coefficient [27] is(

j1 j2 l

j3 j4 m

)
q

= �(j1, . . . , l)�(j3, . . . , l)�(j1, . . . , m)�(j2, . . . , m)
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Figure 16. The quantum circuit implementing the general duality transformation.

×
∑
x�0

(−)x[x + 1]! {[x − j1 − j2 − l]![x − j3 − j4 − l]![x − j1 − j4 − m]!

× [x − j2 − j3 − m]![j1 + j2 + j3 + j4 − x]![j1 + j3 + l + m − x]!

× [j2 + j4 + l + m − x]!}−1, (18)

where [x]!
.= [x][x − 1]! with [0]! = 1, and [·] denotes the q integer. The sum is restricted to

all allowed values of x such that the quantum integers entering the factorials are non-negative
and

�(a, b, c) =
√

[−a + b + c]![a − b + c]![a + b − c]!

[a + b + c + 1]!
.

Due to the finiteness of the sum, the coefficients (17) can thus be efficiently evaluated classically
for all the SU(2)q irreps.

For what concerns the action on the qubit-register, elements (17) belong to unitary matrices
of rank 2log(k+1)�, parametrized by the set j of those quantum numbers which remain unchanged
along the transformation. The crucial fact to note here is that the dimension of these matrices is
independent of the size of our problem, given by the index of the braid group and the number
of crossings. Since there exist efficient methods to approximate unitary matrices of given
dimension [35], there exists a sequence of universal gates that efficiently approximates every
q-6j transformation. The number of elementary q-6j transformations needed to decompose
a general q-3nj recoupling transformation is 2m − 3, linear in the size of the problem. In
conclusion, the Kaul representation K associated with an arbitrary coloured oriented braid can
indeed be efficiently compiled on a standard quantum computer. The circuit implementing
the decomposition of K is shown in figure 16.

4.3. The algorithm

The general structure of the quantum automaton whose dynamical evolution derived in [3]
is characterized by probability amplitudes whose values correspond to observables of the CS
QFT (coloured Jones polynomial), can be finally translated into an efficient quantum circuit
by resorting to a procedure similar to that adopted by Aharonov, Jones and Landau in [2].
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In section 4.2, we have shown that every unitary matrix belonging to the image of
representation K is efficiently decomposable into a set of universal gates. We now prove that
the information contained in the expectation value V [L; j; q] given by

〈�(0;0)(l̂1, . . . , l̂
∗
m)|K

[
b

(
l̂1 . . . l̂∗m
ĵ 1 . . . ĵ ∗

m

)]
|�(0;0)(ĵ 1, . . . , ĵ

∗
m)〉

can be efficiently accessed by a series of measurements.
To begin with, we recall that the standard procedure used in quantum computation to

evaluate the expectation value of a unitary relies on a scheme dubbed Hadamard’s trick. The
latter was applied for the first time in [2] dealing just with the problem of evaluating the Jones
polynomial. We further recall that the notion of approximation used in the present context,
formalized in [36], is that of additive approximation, which has the following meaning: given
a normalized function f (x), where x denotes an instance of the problem in the selected coding,
we have an additive approximation of its value for each instance x if we can associate to f (x)

a random variable Z such that

Pr{|f (x) − Z| � δ} � 3/4,

for any δ � 0. The time needed to achieve the approximation must be polynomial in the
size of the problem and in δ−1. The additive characterization of this approximation scheme
underlies the fact that the interval Z − δ, Z + δ], which we want to determine, is constructed
adding ±δ to Z. It also distinguishes this approximation scheme from the standard fully
polynomial randomized approximation scheme. The normalization adopted for the coloured
Jones polynomial of a link L is provided by the product, over all the link components, of the
quantum integer related to the dimension of the SU(2)q irreps labeling the knots. The problem
we are interested in can now be stated as follows.

Problem: Approximate coloured Jones polynomials (VL). Given a coloured braid b ∈ B2m

of length �, a colouring c, a positive integer k and a real δ > 0, we want to sample from a
random variable Z which is an additive approximation of the absolute value of the coloured
Jones polynomial of the plat closure of b, evaluated at q = exp

(
2π i
k+2

)
, such that the following

condition holds true

Pr(|V (L; j; q) − Z| � δ) � 3/4.

Here the colouring c denotes the set of all possibly different irreps of SU(2)q labeling the
component knots of L.

In the following, we shall provide an efficient quantum algorithm for VL, which solves it
in O(poly(�, δ−1)) steps. As in [2, 37], we need the following two lemmas in order to prove
the efficiency of the algorithm.

Lemma 1. Given a quantum circuit U of length O(poly(n)), acting on n qubits, and given
a pure state |�〉 which can be prepared in time O(poly(n)), then it is possible to sample
in O(poly(n)) time from two random variables a and b, valued in Z2, in such a way that
〈a + ib〉 = 〈�|U |�〉.
Lemma 2. For a sufficiently large N, given a set of random variables {ri |i = 1, . . . , N} of
average value m and square variance v

Pr

(∣∣∣∣∣N−1
N∑

i=1

ri − m

∣∣∣∣∣ � δ

)
� 2 exp(−Nδ2/(4v)).
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K(b)K(b)

|0>+|1>|0>+|1>

2

|Φ

M( )σ σx y; )x y;

Figure 17. The circuit realizing the Hadamard’s trick for the Kaul representation of the braid b.
M(σx ; σy) denotes quantum measurement of either σx or σy .

The first lemma, which is essentially a reformulation of the Hadamard’s trick, can be proved
as follows. Introduce a single-qubit ancilla A and denote by G the Hilbert space of the qubits
acted on by U. Define the unitary C : A ⊗ G → A ⊗ G through the action:

C(|0〉 ⊗ |�〉) = |0〉 ⊗ |�〉,
C(|1〉 ⊗ |�〉) = |1〉 ⊗ (U |�〉).

Initialize then the ancillary qubit in the state 1√
2
(|0〉 + |1〉) ∈ A and prepare the system in the

initial state |�〉. The action of C maps the initial state into |〉 ∈ A ⊗ G

|〉 ≡ 1√
2
(|0〉|�〉 + |1〉(U |�〉)).

The reduced density matrix ρA of the ancilla is thus equal to

ρA = TrG|〉〈| = 1

2
TrG

(
� �U †

U� U�U †

)
= 1

2

(
1 〈�|U †|�〉

〈�|U |�〉 1

)

= 1

2
(I2 + σx Re〈�|U |�〉 + σy Im〈�|U |�〉),

where � denotes the density matrix |�〉〈�| and σx, σy are Pauli matrices.
The mean value of a sequence of measurements of σx will approach Re〈�|U |�〉, whereas

the mean value of a sequence of measurements of σy will approach Im〈�|U |�〉.
The second lemma, which is a modified version of the well known Chernoff bound,

ensures us that we can approximate these values polynomially in the number N of samplings
and in the inverse of the precision δ−1.

Summarizing the qubit model for the Kaul representation can be used to efficiently
compile a unitary representation of the coloured braid group, and a sampling procedure can
then be used to efficiently estimate the value of the coloured Jones polynomial. The circuit
that realizes all these steps is schematically depicted in figure 17.

In conclusion, the sampling lemma tells us that measurements of σx on the first qubit will
provide the value for Re(V (L, j, q)), while measurements of σy on the first qubit will provide
the value for Im(V (L, j, q)).

5. Conclusions

The q-deformed spin-network model provides the natural setting for a quantum automaton
capable of processing the braid group language. Coding of information in the spin network
is done in the frame of the coupling scheme associated with the ‘co-power’ �n(SU(2)q)

(iterated co-product) of the network q-algebra. Such parenthesized coding lends itself
quite naturally to deal with a number of hard combinatorial problems, ranging from finite
groups word or isomorphism problems [38, 39] to the evaluation of topological invariants.
Work is in progress on problems of the former type. Focusing mainly on the latter, for
consistency with our introductory physical setting, we discuss here briefly the role played
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by the coloured link polynomial introduced above in three-dimensional geometric topology
[40, 41] in view of Thurston’s ‘geometrization programme’ [42]. Indeed the possible extension
of our quantum algorithm to address the (classically computationally hard) problems outlined
below would represent a major breakthrough both in quantum computation and in the theory
of closed (hyperbolic) 3-manifolds. On the physical side, such an achievement would open the
possibility of ‘controlling’ the quantum algorithmic complexity of three-dimensional quantum
gravity models. It is worth recalling here the alternative point of view introduced by the recent
attempt by Lloyd of unifying quantum mechanics and gravity, where the very geometry of
spacetime is a construct derived from the underlying quantum computation [43].

5.1. Reshetikhin–Turaev quantum invariants of 3-manifolds and their quantum complexity

At its foundation, knot theory is a branch of geometric topology, since it allows us to explore
three-dimensional spaces by ‘knotting’ phenomena, namely embedded knots ‘interact’ with
the topological structure of the ambient 3-manifold M3. The content of the latter remark
is made more stringent by a theorem which asserts that every closed connected orientable
3-manifold can be obtained by Dehn ‘surgery’ along a framed link embedded in the 3-sphere
S3 (we refer to [23] for definitions and proofs). Roughly speaking, a tubular neighbourhood
of each component of the embedded link L, represented by S1 × D2 (D2 being the 2-disk), is
removed and replaced by D2 × S1 in a suitable way, generating the new manifold. Formally

(S3, L) −→ M3
L

.= S3\L. (19)

It can also be shown that equivalent links, namely links which are ambient isotopic, give rise
to the same type of 3-manifolds (the manifolds obtained by surgeries in the 3-sphere along
equivalent links are homeomorphic).

The idea that the Jones polynomial at a root of unity q can be ‘amplified’ to achieve a
3-manifold quantum invariant dates back to Witten and was further implemented by a number
of authors ([23] and references therein). Such invariants, which correspond to the partition
function (2) evaluated for a manifold M3

L, are linear sums of Jones polynomials of copies of
the link with the components replaced by various parallels of the original components. The
authors of [44] propose to address the problem of designing quantum algorithms for Witten
invariants by resorting to Temperley–Lieb algebra techniques.

The quantum algorithm for the coloured Jones polynomials discussed in section 4, allows
us to conjecture that the associated coloured 3-manifold quantum invariants at a fixed root
of unity can be actually evaluated in a quite straightforward way. The explicit expression
of the (Witten–)Reshetikhin–Turaev quantum invariant for a 3-manifold M3

L to be used for
computational purposes was proposed by Kirby and Melvin [22] and reads

τ
(
M3

L; q
) = αL

∑
j

[j]Ej1...js
[L; q],

where j stands for the collective assignment of colourings to the link components, the
summation is over all admissible colourings and [j] = ∏s

i=1[2ji + 1]. Ej1...js
[L; q] is given in

(5) and αL = bnLcσL . Here b and c are numbers depending on the integer k (b = √
(2/k) sin π

k

and c = exp[−2π i(k − 2)/8k]), nL is the number of link components and σL is the signature
of the linking matrix of L. The linking matrix ML of a framed link L is a symmetric matrix
whose entry (ML)ij for i �= j is the linking number between components i and j of L. The
diagonal elements of ML are defined to be the integers that give the framing of the individual
components. The linking matrix , defined here in combinatorial terms, is related to the
topology of M3

L because its determinant (if it is non-zero) is the order of the first homology
group of the manifolds.
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5.2. The volume conjecture for hyperbolic 3-manifolds

In the framework of Thurston’s geometrization program [42] (all three-dimensional manifolds
can be reconstructed starting from eight types of model geometries), hyperbolic 3-manifolds
play a special role. Recall that a 3-manifold is hyperbolic if it is endowed with a complete
Riemannian metric with constant negative sectional curvature. The most interesting case
is that of complete hyperbolic manifolds with finite volume (the volume being evaluated in
the given metric) since the Mostow rigidity theorem asserts that any two such manifolds are
homeomorphic if and only if they are homotopically equivalent (we refer to [45] for details
and original references). Typical instances of such manifolds are obtained as quotients of the
hyperbolic 3-space H

3 by discrete subgroups of the full isometry group of H
3.

Consider the set of all complete hyperbolic 3-manifolds with a finite volume. Then the
set of volumes is totally ordered; moreover there exist only finitely many different hyperbolic
3-manifolds with the same volume [46]. Thus the volume of an hyperbolic manifold (unlike
what happens in the Euclidean and elliptic cases) can be considered as a topological invariant.
Computer geometry is the branch of geometric topology devoted to the calculation of these
invariants: it still exhibits many open problems interesting for a quantum-computational
approach, but it is most intriguing that such a hard ‘computational’ approach raised discussions
among mathematicians about the ‘philosophical’ question of the effectiveness of mathematical
proofs.

At first sight the above remarks on hyperbolic volumes does not seem related to our
central issue of coloured quantum invariant of 3-manifolds. However, this is not the case: a
connection can be easily recognized by observing that most manifolds obtained by surgery on
framed knots (links) in the 3-sphere can be endowed with hyperbolic metrics. Let us focus
for example on ‘hyperbolic knots’, namely those knots which give rise by surgery to (finite
volume) hyperbolic 3-manifolds: the ‘volume conjecture’ proposed by [47, 48] (see also the
review [40] for extended versions) can be cast in this case in the form

2π lim
N→∞

log|JN(K)|
N

= Vol(S3\K), (20)

where K is a hyperbolic knot and the notation JN(K) stands for the N-coloured polynomial of
K evaluated at q = exp(2π i/N).

Note that all the quantum algorithms dealing with link polynomials are established for
a fixed choice of the root of unity q appearing in the argument of the invariants, while the
volume conjecture involves the analysis of the asymptotic behaviour of ‘single-coloured’
polynomial of the same knot for increasing values of the colouring itself. Recently, Aharonov
and Arad [49] have addressed an asymptotic analysis (k → ∞) for the Jones polynomial,
still 1

2 -coloured. It would be interesting to explore the possibility of borrowing some of
their techniques to test the conjecture (20) within the computational framework designed for
coloured polynomials.
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